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Stability of Semiclassical Gravity Solutions With
Respect to Quantum Metric Fluctuations

B. L. Hu,1 Albert Roura,1,3 and Enric Verdaguer2

We discuss the stability of semiclassical gravity solutions with respect to small quantum
corrections by considering the quantum fluctuations of the metric perturbations around
the semiclassical solution. We call the attention to the role played by the symmetrized 2-
point quantum correlation function for the metric perturbations, which can be naturally
decomposed into two separate contributions: intrinsic and induced fluctuations. We
show that traditional criteria on the stability of semiclassical gravity are incomplete
because these criteria based on the linearized semiclassical Einstein equation can only
provide information on the expectation value and the intrinsic fluctuations of the metric
perturbations. By contrast, the framework of stochastic semiclassical gravity provides
a more complete and accurate criterion because it contains information on the induced
fluctuations as well. The Einstein–Langevin equation therein contains a stochastic source
characterized by the noise kernel (the symmetrized 2-point quantum correlation function
of the stress tensor operator) and yields stochastic correlation functions for the metric
perturbations which agree, to leading order in the large N limit, with the quantum
correlation functions of the theory of gravity interacting with N matter fields. These
points are illustrated with the example of Minkowski space-time as a solution to the
semiclassical Einstein equation, which is found to be stable under both intrinsic and
induced fluctuations.

KEY WORDS: semiclassical gravity; quantum metric fluctuations; stochastic gravity;
Einstein–Langevin equation.

1. INTRODUCTION

In this paper we discuss the stability of the solutions of semiclassical gravity
(SCG) (Birrell and Davies, 1994; Fischetti et al., 1979; Flanagan and Wald, 1996;
Hartle and Hu, 1979; Hu and Parker, 1978; Wald, 1994; Zeldovich and Starobinsky,
1972) emphasizing the role of metric fluctuations induced by the quantum matter
sources. SCG is based on the self-consistent solutions of the semiclassical Einstein
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equation for a classical space-time driven by the expectation value of the stress
tensor operator of quantum matter fields. We propose a criterion based on stochastic
semiclassical gravity which involves the fluctuations of the metric.

SCG accounts for the averaged back reaction of quantum matter fields and can
be regarded as a mean field approximation that describes the dynamics of the mean
space-time geometry. However, it does not account for the effects of the fluctuations
of space-time geometry. Here we focus on the effects of the quantum fluctuations
of the metric. We will restrict our treatment to small metric perturbations around a
given background geometry. One can then use the stochastic semiclassical gravity
formalism (Hu and Verdaguer, 2003, 2004) to study the fluctuations of the metric
perturbations. In fact, one can show that the leading order contribution to the
quantum correlation functions in a large N expansion is equivalent to the stochastic
correlation functions obtained by solving the Einstein–Langevin equation in the
context of stochastic semiclassical gravity. By leading order in the large N limit we
mean the lowest order in 1/N with a nonvanishing contribution (thus, when using
the rescaled gravitational coupling constant introduced in Section 2.2, the leading
order for the source of the semiclassical Einstein equation is 1/N 0, whereas the
leading order for the quantum 2-point correlation function is 1/N ).

Making use of the equivalence between quantum and stochastic correlation
functions in stochastic semiclassical gravity, one is naturally led to separate the
symmetrized quantum correlation function for the metric perturbations (to lead-
ing order in 1/N ) into two separate contributions: the intrinsic and the induced
fluctuations. The former is connected to the dispersion of the initial state of the
metric perturbations, whereas the latter is induced by the quantum fluctuations of
the matter fields’ stress tensor operator.

Different aspects concerning the validity of the description provided by SCG
in the case of free quantum matter fields in the Minkowski vacuum state propa-
gating on Minkowski space-time have been studied by a number of authors. Most
of them considered the stability of such a solution of SCG with respect to small
perturbations of the metric. Horowitz was the first one to analyze the equations
describing those perturbations, which involve higher order derivatives (up to fourth
order), and found unstable solutions that grow exponentially with characteristic
timescales comparable to the Planck time (Horowitz, 1980, 1981). This was later
reanalyzed by Jordan with similar conclusions (Jordan, 1987). However, those un-
stable solutions were regarded as an unphysical artifact by Simon, who argued that
they lie beyond the expected domain of validity of the theory and emphasized that
only those solutions which resulted from truncating the perturbative expansions
in terms of the square of the Planck length are acceptable (Simon, 1990, 1991).
Further discussion was provided by Flanagan and Wald (1996), who advocated
the use of an order reduction prescription first introduced by Parker and Simon
(1993) but insisted that even nonperturbative solutions of the resulting second-
order equation should be regarded as acceptable. Following these approaches,
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Minkowski space-time is shown to be a stable solution of SCG with respect to
small metric perturbations.

Anderson, Molina-Parı́s, and Mottola have recently taken up the issue of the
validity of SCG (Anderson et al., 2003) again. Their starting point is the fact that
the semiclassical Einstein equation will fail to provide a valid description of the
dynamics of the mean space-time geometry whenever the higher order radiative
corrections to the effective action, involving loops of gravitons or internal graviton
propagators, become important (see Tsamis and Woodard, 1996 a,b, 1997, 1998,
for some attempts to include those effects). Next, they argue qualitatively that such
higher order radiative corrections cannot be neglected if the metric fluctuations
grow without bound. Finally, they propose a criterion (a necessary condition) to
characterize the growth of the metric fluctuations, and hence the validity of SCG,
based on the stability of the solutions of the linearized semiclassical equation.

This is a summary of a recent paper we wrote (Hu et al., 2004) addressing
the issue of the stability of semiclassical solutions with respect to small quantum
corrections. When the metric perturbations are quantized, the semiclassical equa-
tion can be interpreted as the equation governing the evolution of the expectation
value of the operator for the metric perturbations. We introduce a stability criterion
based on whether the metric fluctuations grow without bound or not by considering
the behavior of the quantum correlation functions of the metric perturbations. We
emphasize that one should consider not only the intrinsic fluctuations but also the
induced ones. It is true that the effect of intrinsic fluctuations can be deduced from
an analysis of the solutions of the perturbed semiclassical Einstein equation, but
in general one cannot retrieve the effect of the induced fluctuations from it. This
effect can be properly accounted for in the stochastic semiclassical gravity frame-
work. Both intrinsic and induced fluctuations are innate in the Einstein-Langevin
equation.

Throughout the paper we use natural units with h = c = 1 and the (+, +, +)
convention of Misner et al. (1973). We also make use of the abstract index notation
of Wald (1984). Latin indices denote abstract indices, whereas Greek indices are
employed when a particular coordinate system is considered.

2. SEMICLASSICAL GRAVITY AND STOCHASTIC
SEMICLASSICAL GRAVITY

2.1. Semiclassical Gravity

A possible first step when addressing the interplay between gravity and quan-
tum field theory is to consider the evolution of quantum matter fields (matter field
is referred to here as any field other than the gravitational one) on a classical space-
time with a nontrivial geometry, characterized by a metric gab. As opposed to the
situation for a Minkowski space-time, there is in general no preferred vacuum
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state for the fields and particle creation effects naturally arise, such as Hawking
radiation for black holes, cosmological particle creation, and the generation of
primordial inhomogeneities in inflationary cosmological models. Quantum field
theory in curved space-time (QFTCST) is by now a well-established subject (at
least for free fields and globally hyperbolic space-times). (Birrell and Davies, 1994;
Wald, 1994).

QFTCST is only an approximation in that the matter fields are treated as test
fields evolving on a given space-time. Einstein’s theory requires that space-time
dynamics determines and is determined by the matter field. Thus one needs to
consider the back reaction of the quantum matter fields on the dynamics of the
space-time geometry, which naturally leads to the semiclassical theory of gravity,
where the evolution of the space-time metric gab is determined by the semiclassical
Einstein equation

Gab[g] + �gab − αAab[g] − β Bab[g] = κ〈T̂ab[g]〉′ren, (1)

where gab is the space-time metric, Gab[g] is the Einstein tensor, and the mat-
ter source corresponds to the renormalized expectation value of the stress tensor
operator of the matter fields (a prime was used to distinguish it from that intro-
duced below after absorbing some terms). Here, � is the renormalized cosmolog-
ical constant, κ = 8πG, with G ≡ 1/m2

p being the Newton constant and m p the
Planck mass. α and β are renormalized dimensionless coupling constants associ-
ated with tensors Aab[g], Bab[g] needed for the renormalization of the logarithmic
divergences (the renormalized coupling constants are running coupling constants
which depend on some renormalization scale µ; however, since 〈T̂ab[g]〉′ren has
the same dependence on µ, the semiclassical Einstein equation is invariant under
the renormalization group, which involves changes in the renormalization scale
µ). The expectation value of the stress tensor operator exhibits divergences which
are local and state independent. Introducing a covariant regularization and renor-
malization procedure, those divergences can be absorbed into the cosmological
constant, the Newton constant multiplying the Einstein–Hilbert term and the grav-
itational action counterterms quadratic in the curvature. The finite contributions
from those counterterms give rise to the covariantly conserved tensors Aab and Bab

which result from functionally differentiating with respect to the metric the terms∫
d4x

√−gCabcdCabcd and
∫

d4x
√−gR2, respectively, where Cabcd is the Weyl

tensor and R is the Ricci scalar. Those contributions were explicitly written on the
left-hand side of Eq. (1), but from now on will be included in the renormalized
expectation value of the stress tensor operator so that the semiclassical Einstein
equation becomes

Gab[g] = κ〈T̂ab[g]〉ren. (2)

The field operators appearing in the stress tensor operator for the quantum matter
fields are in the Heisenberg picture and satisfy the corresponding equation of
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motion, which coincides with the classical field equation for fields evolving on
that space-time. In particular, if we consider a free scalar field, the field operator
in the Heisenberg picture will satisfy the corresponding Klein–Gordon equation
for that geometry.

Given a manifold M and a metric gab, which characterize a globally hyper-
bolic space-time, and a density matrix ρ̂, which specifies the state of the quantum
matter fields on a particular Cauchy hypersurface, the triplet (M, gab, ρ̂) consti-
tutes a solution of SCG if it is a self-consistent solution of both the semiclassical
Einstein Eq. (2) and the equations of motion for the quantum operators of the
matter fields evolving on the space-time manifold M with metric gab. Those op-
erators enter in turn into the definition of the stress tensor operator appearing in
the semiclassical Einstein equation.

One can always consider small metric perturbations around a given solution
of semiclassical gravity characterized by a metric gab. The linearized semiclassical
equation for the metric perturbations becomes then

G(1)
ab [g + h] = κ

〈
T̂ (1)

ab [g + h]
〉
ren, (3)

where the superindex (1) was used to denote that only terms linear in the metric
perturbation hab should be considered. The expectation value 〈T̂ (1)

ab [g + h]〉ren can
be evaluated working directly with the quantum operators for the matter fields in
the Heisenberg picture in some cases (Martı́n and Verdaguer, 1999), but is usually
more convenient to obtain it from the corresponding effective action in the CTP
formalism (Calzetta and Hu, 1987, Campos and Verdaguer, 1994; Jordan, 1986).

2.2. Stochastic Semiclassical Gravity

The semiclassical Einstein equation, which takes into account only, the mean
values, is inadequate whenever the fluctuations of the stress tensor operator are
important. An improved treatment is provided by the Einstein–Langevin equation
of stochastic gravity, which contains a (Gaussian) stochastic source with a vanish-
ing expectation value and a correlation function characterized by the symmetrized
2-point function of the stress tensor operator. This theory has been discussed by
a number of authors (Calzetta et al., 1997; Calzetta and Hu, 1994; Campos and
Verdaguer, 1996; Hu and Matacz, 1995; Hu and Sinha, 1995; Hu and Verdaguer,
2003, 2004; Martin and Verdaguer, 1999). Consider a globally hyperbolic back-
ground space-time and an initial state for the quantum matter fields (one usually
restricts to free fields) which constitute a self-consistent solution of SCG, i.e.,
they satisfy the semiclassical Einstein equation with the expectation value of the
stress tensor operator obtained by considering the evolution of the matter fields on
the same background geometry. The Einstein–Langevin equation governing the
dynamics of the linearized perturbations hab around the background metric gab is
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given by

G(1)
ab [g + h] = κ

〈
T̂ (1)

ab [g + h]
〉
ren + κξab[g], (4)

where the Gaussian stochastic source ξab[g] is completely characterized by its
correlation function in terms of the noise kernel Nabcd (x , y), which accounts for
the fluctuations of the stress tensor operator, as follows:

〈ξab[g; x)ξcd [g; y)〉ξ = Nabcd (x , y) ≡ 1

2
〈{t̂ ab[g; x), t̂ cd [g; y)}〉, (5)

where t̂ab ≡ T̂ ab − 〈T̂ ab〉 and 〈. . .〉 is the usual expectation value with respect to the
quantum state of the matter fields, whereas 〈. . .〉ξ denotes taking the average with
respect to all possible realizations of the stochastic source ξab. Note that any local
term quadratic in the curvature arising from finite contributions of the counterterms
required to renormalize the bare expectation value of the stress tensor operator has
been absorbed into its renormalized version 〈T̂ (1)

ab [g + h]〉ren. It should also be
emphasized that the solutions of the Einstein–Langevin equation for the metric
perturbations are classical stochastic tensorial fields, not quantum operators.

The precise meaning that should be given to these stochastic metric perturba-
tions and the relation of the corresponding stochastic correlation functions to the
quantum fluctuations that result from quantizing these metric perturbations can be
established by considering N matter fields. Making use of a large N expansion, one
can then show that the stochastic correlation functions for the metric perturbations
obtained from the Einstein–Langevin equation coincide with the leading order
contribution to the quantum correlation functions in the large N limit (Hu et al.,
2004; Roura and Verdaguer, manuscript in preparation-a). In particular the 2-point
stochastic correlation function is equivalent to the symmetrized quantum corre-
lation function to leading order in 1/N provided that one also averages over the
initial conditions for the solutions of the Einstein–Langevin equation distributed
according to the Wigner functional characterizing the initial state of the metric
perturbations (see Eq. (C11) in Hu et al., 2004, for the definition of the Wigner
functional). It is, therefore, convenient to express the solutions of the Einstein–
Langevin equation as

hab(x) = �
(0)
ab (x) + κ̄(Gret · ξ )ab(x), (6)

where we have introduced the notacion A · B ≡ ∫
d4 y

√−g(y)A(y)B(y), κ̄ = Nκ

is the rescaled gravitational coupling constant introduced in Hu et al. (2004),
�

(0)
ab (x) is a solution of the homogeneous part of the Einstein–Langevin equa-

tion (4) containing all the information about the initial conditions (by homoge-
neous part we mean Eq. (4) excluding the stochastic source, which coincides with
the semiclassical Einstein equation (2)), and Gret(x , x ′) is the retarded propagator
with vanishing initial conditions associated with that equation (see Appendix E.3
in Hu et al. (2004) for important remarks on the propagator). Using Eq. (5), we
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can then get the following result for the symmetrized 2-point quantum correlation
function of the metric perturbations around a Minkowski background:

1

2
〈{ĥab(x), ĥcd (x ′)}〉 =

〈
�

(0)
ab (x)�(0)

cd (x ′)
〉
�

(i)
ab (x),cd

(i)

+ κ̄2

N
(Gret · N · (Gret)

T )abcd (x , x ′), (7)

where the Lorentz gauge condition ∇a(hab − (1/2)ηabhc
c) = 0 as well as some

initial condition to fix completely the remaining gauge freedom of the initial state
should be implicitly understood, and the stochastic source was rescaled according
to Hu et al. (2004) and Roura and Verdaguer (manuscript in preparation-a) so that
〈ξab[g; x)ξcd [g; y)〉ξ = (1/N )Nabcd (x , y), where Nabcd (x , y) is the noise kernel
for a single field.

There are two different contributions to the symmetrized quantum correlation
function. The first one is connected to the quantum fluctuations of the initial state
of the metric perturbations and we will refer to it as intrinsic fluctuations. The
second contribution, proportional to the noise kernel, accounts for the fluctuations
due to the interaction with the matter fields, and we will refer to it as induced
fluctuations.

3. STABILITY OF SEMICLASSICAL GRAVITY SOLUTIONS:
PREVIOUS WORK

Although the stability of other semiclassical gravity solutions in addition
to Minkowski space-time has been studied (see, for instance, Starobinsky, 1980;
Suen, 1985; Vilenkin, 1985, for analysis involving Robertson–Walker geometries),
most of the analyses have concentrated on the stability of small perturbations
around Minkowski space-time. This case already exhibits the main features and
difficulties that one may encounter when dealing with back-reaction effects in
semiclassical gravity and will be used in the next section to illustrate the generalized
stability criterion introduced there. In this section we give a brief review of previous
work on the stability of semiclassical gravity solutions specialized, for the reasons
mentioned above, to the case of Minkowski space-time.

The stability of metric perturbations around a Minkowski space-time interact-
ing with quantum matter fields in their Minkowski vacuum state was first studied
in the context of SCG by Horowitz (1980). He considered massless conformally
coupled scalar fields and found exponential instabilities for the linearized met-
ric perturbations with characteristic timescales comparable to the Planck time.
Those solutions are closely related to the higher derivative countertems required
to renormalize the expectation value of the stress tensor operator and are analo-
gous to the runaway solutions commonly present in radiation reaction processes
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such as those considered in classical electrodynamics (Jackson, 1999; Johnson
and Hu, 2002). It is generally believed that the runaway solutions obtained by
Horowitz are an unphysical artifact since they involve scales beyond the regime
where SCG is expected to be reliable (in fact, this statement can be naturally formu-
lated when regarding general relativity as a low-energy effective theory (Burgess,
2003).

Since the existence of terms with higher derivatives in time implies an increase
in the number of degrees of freedom (in an initial value formulation, not only the
metric and its time derivative should be specified, but also its second- and third-
order time derivatives), it seems plausible that, by restricting to an appropriate
subspace of solutions of the semiclassical Einstein equation, one can reestablish the
usual number of degrees of freedom in general relativity and, at the same time, get
rid of all the unphysical runaway solutions. Following this line of thought, Simon
proposed that one should restrict to solutions which result from truncating to order
h an analytic expansion in h (or equivalently in l2

p, the Planck length squared)
(Simon, 1990, 1991). Together with Parker, he also introduced a prescription to
reduce the order of the semiclassical Einstein equation which was computationally
convenient for obtaining solutions corresponding to such truncated perturbative
expansions in h (Parker and Simon, 1993).

On the other hand, Flanagan and Wald argued that Simon’s criterion based
on truncating to order h solutions which correspond to analytic expansions in h
seemed too restrictive since it only allowed small deviations with respect to the
classical solutions of the Einstein equations (Flanagan and Wald, 1996). In partic-
ular, one would miss those situations in which the small semiclassical corrections
build up to give significant deviations at long times, such as those corresponding
to the evaporation of a macroscopic black hole (with a mass much larger than
the Planck mass) by emission of Hawking radiation. Furthermore, they illustrated
with simple examples that there are cases in which one expects that no solutions
of the semiclassical equation are analytic in h. Therefore, they suggested that,
rather than trying to restrict the subspace of acceptable solutions, one should sim-
ply transform the semiclassical equation, by making use of Simon and Parker’s
order reduction prescription, to a second-order equation which was equivalent to
the original equation up to the order in h (or l2

p) under consideration. All the
solutions of the second-order equation should then be regarded as acceptable,
even if they are not analytic in h. Obviously, one could only extract physically
reliable information from those solutions for scales much larger than the Planck
length.

Yet another prescription was proposed by Anderson et al. (2003) on the
stability of small metric perturbations around the Minkowski space-time. They got
rid of the unphysical runaway solutions by working in Fourier space and discarding
those solutions which corresponded to 4 momenta with modulus comparable or
larger in absolute value than the Planck mass. However, it is not clear how this
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procedure could be generalized to situations where working in Fourier space is not
adequate, as in time-dependent background space-times.

The consequences of both the order reduction prescription introduced by
Simon and Parker and advocated by Flanagan and Wald, and the procedure em-
ployed by Anderson et al. are rather drastic, at least when applied to the case of a
Minkowski background, since one is just left with the solutions of the sourceless
classical Einstein equation corresponding to linear gravitational waves propagat-
ing in Minkowski. In fact, the situation was not completely trivial for Flanagan and
Wald, who were interested in analyzing whether the averaged null energy condi-
tion (ANEC) was satisfied in SCG by considering perturbations of the Minkowski
solution, because they also perturbed the state of the matter fields. The order re-
duction prescription also seems to exclude those solutions which correspond to
inflationary models driven entirely by the vacuum polarization of the quantum
matter fields (Simon, 1992), such as the trace anomaly-driven inflationary model
initially proposed by Starobinsky (1980). To keep this kind of models, Hawking,
Hertog, and Reall considered a less drastic alternative to deal with the runaway
solutions (Hawking et al., 2001; Hawking and Hertog, 2002). Their procedure,
which is analogous to some methods previously employed in classical electrody-
namics for radiation reaction problems (Jackson, 1989), is based on discarding
solutions which grow without bound at late times (see Hu et al., 2004, for further
discussions on this and related issues).

4. GENERALIZED STABILITY CRITERION. APPLICATION
TO MINKOWSKI SPACE-TIME

4.1. Generalized Stability Criterion

How does one characterize the quantum state of the metric perturbations?
The first candidate is the expectation value of the operator associated with the
perturbation of the metric, ĥab. In fact, using a large N expansion, Hartle and
Horowitz showed that the semiclassical Einstein equation can be interpreted as the
equation governing the evolution of the expectation value of the metric to leading
order in 1/N (Hartle and Horowitz, 1981). Taking that result into account, the
study of the stability of a solution of SCG by linearizing the semiclassical Einstein
equation with respect to small metric perturbations around that solution can be
understood in the following way: Take an initial state for the metric perturbations
with a small nonvanishing expectation value for the operator ĥab, let it evolve, and
see if the expectation value grows without bound.

However, in addition to the expectation value of ĥab, the state of the metric
perturbations will also be characterized by its fluctuations. Let us now suppose
that the evolution of the expectation value is stable (i.e., that it does not grow
unboundedly with time) or even that it vanishes for all times. It is clear that the
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semiclassical solution cannot be regarded as stable with respect to small quantum
corrections if the fluctuations of the state for the metric perturbations grow without
bound. Therefore, the stability criteria based on the solutions of the semiclassical
Einstein equation, which can be interpreted as conditions on the stability of the
expectation value of the operator ĥab for the state of the metric perturbations,
should be generalized: one also needs to take into account the fluctuations. In
addition to the expectation value, the n-point quantum correlation functions for
the metric perturbations (starting with n = 2) should also be stable.

As explained in Hu et al. (2004) and Roura and Verdaguer (manuscript in
preparation-a), to leading order in 1/N the CTP generating functional for the
metric perturbations exhibits a Gaussian form provided that a Gaussian initial state
for the metric perturbations with vanishing expectation value is chosen. All the
n-point quanturn correlation functions can then be obtained, to leading order in
1/N , from the 2-point quantum correlation function. Furthermore, any of the
2-point quantum correlation functions can in turn be expressed in terms of the
symmetrized and antisymmetrized correlation functions (the expectation values
of the commutator and anticommutator of the operator ĥab. To leading order in
1/N the commutator is independent of the initial state of the metric perturbations
and is given by 2iκ(Gret(x , x ′) − Gret(x , x ′)). On the other hand, the expectation
value of the anticommutator is given by Eq. (7) and is the sum of two separate
contributions: the intrinsic and the induced fluctuations.

The first contribution in Eq. (7) to the correlation function for the metric per-
turbations involves the solutions of the homogeneous part of the Einstein–Langevin
equation (4), which actually coincides with the linearized semiclassical equation
for the metric perturbations around the background geometry. Similarly, Gret cor-
responds to the retarded propagator (with vanishing initial conditions) associated
with the linearized semiclassical equation. Thus, solving the perturbed semiclassi-
cal Einstein equation not only accounts for the evolution of the expectation value
of the metric perturbations, which will exhibit a nontrivial dynamics as long as we
choose an initial state with nonvanishing expectation value, but also provides non-
trivial information, even for a state with a vanishing expectation value, about the
commutator as well as the intrinsic fluctuations of the metric. This implies that the
analysis about the stability of the solutions of SCG can also be used to determine
the stability of the metric perturbations with respect to intrinsic fluctuations.

The observation we make here is that the induced fluctuations can be im-
portant as well. Both the retarded propagator and the solutions of the linearized
semiclassical Einstein equation depend on the expectation value of the commutator
of the stress tensor operator on the background geometry and on the imaginary part
of its time-ordered 2-point function. However, they do not involve the expectation
value of the anticommutator, which drives the induced fluctuations. Furthermore,
although the expectation values of the commutator and the anticommutator are
related by a fluctuation–dissipation relation in some particular cases (Martı́n and
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Verdaguer, 1999, 2000), that is not true in general and the induced fluctuations
need to be explicitly analyzed.

To sum up, when analyzing the stability of a solution of SCG with respect to
small quantum corrections, one should also consider the behavior of both the in-
trinsic and the induced fluctuations of the quantized metric perturbations. Whereas
information on the stability of the intrinsic fluctuations can be retrieved from an
analysis of the solutions of the perturbed semiclassical Einstein equation, the ef-
fect of the induced fluctuations is properly accounted for only in the stochastic
semiclassical gravity framework based on the Einstein–Langevin equation.

4.2. Stability of Minkowski Space From Our Criterion

We now turn to the application of the criterion proposed in the previous
subsection to the particular yet important case of Minkowski space-time. As
explained there, the existing results in the literature can be interpreted as anal-
ysis of the stability of the expectation value of the operator associated with
the metric perturbations (see, however, Jaekel and Reynaud, 1995; Hartle and
Horowitz, 1981; Horowitz, 1981). On the other hand, we also need to include in
our consideration the fluctuations, characterized by the 2-point quantum correlation
function.

To analyze the 2-point quantum correlation function for the metric pertur-
bations, we will exploit the fact that the stochastic correlation functions obtained
with the solutions of the Einstein–Langevin equation coincide with the quantum
correlation functions for the metric perturbations. Moreover, according to Eq. (7),
the symmetrized 2-point quantum correlation function has two different contribu-
tions: the intrinsic and the induced fluctuations. We proceed now to analyze each
contribution separately.

The first term on the right-hand side of Eq. (7) corresponds to the fluctuations
of the metric perturbations due to the fluctuations of their initial state and is given
by

〈
�

(0)
ab (x)�(0)

cd (x ′)
〉
�

(i)
ab ,cd

(i)

, (8)

where we recall that �
(0)
ab (x) is a solution of the homogeneous part of the Einstein–

Langevin equation (once the Lorentz gauge has been imposed) with the appropriate
initial conditions.

As mentioned in Section 2.2 the homogeneous part of the Einstein–Langevin
equation actually coincides with the linearized semiclassical Einstein equation
(3). Therefore, we can make use of the results derived in the literature (Anderson
et al., 2003; Flanagan and Wald, 1996; Horowitz, 1980), which are briefly sum-
marized in Appendix E of Hu et al. (2001). As described there, in addition to the
solutions with G(1)

ab (x) = 0, there are other solutions that in Fourier space take the
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form G̃(1)
µν(p) ∝ δ(p2 − p2

0) for some particular values of p2
0, but they all exhibit

exponential instabilities with Planckian characteristic timescales.
To deal with those unstable solutions, one possibility is to employ the or-

der reduction prescription. We are then left only with the solutions which satisfy
G̃(1)

µν(p) = 0 (see Hu et al., 2004). The result for the metric perturbations in the
gauge introduced above can be obtained by solving for the Einstein tensor in that
gauge: G̃(1)

ab (p) = (1/2)p2(h̃µν(p) − 1/2ηµν h̃ρ
ρ(p)). Those solutions for h̃µν(p)

simply correspond to free linear gravitational waves propagating in Minkowski
space-time expressed in the transverse and traceless (TT) gauge. When substitut-
ing back into Eq. (8) and averaging over the initial conditions, we simply get the
symmetrized quantum correlation function for free gravitons in the TT gauge for
the state given by the reduced Wigner function.

A second possibility, proposed in Hawking et al. (2001); Hawking and
Hertog (2002), is to impose boundary conditions which discard the runaway solu-
tions that grow unboundedly in time and correspond to a special prescription for
the integration contour when Fourier transforming back to space-time coordinates
(see Appendix E in Hu et al., 2004, for a more detailed discussion). Following
that procedure we get, for example, that for a massless conformally coupled scalar
field, with appropriate values of the renormalized coupling constants, the intrinsic
contribution to the symmetrized quantum correlation function coincides with that
of free gravitons plus an extra contribution for the scalar part of the metric per-
turbations which renders Minkowski space-time stable but plays a crucial role in
providing a graceful exit for inflationary models driven by the vacuum polarization
of a large number of conformal fields (such a massive scalar field would not be
in conflict with present observations because, for the range of parameters usually
considered, the mass would be far too large to have observational consequences;
Hawking et al., 2001).

The second term on the right-hand side of Eq. (7) corresponds to the fluctua-
tions of the metric perturbations induced by the fluctuations of the quantum matter
fields and is given by

κ̄2

N
(Gret · N · (Gret)

T )abcd (x , x ′) = Nκ2(Gret · N · (Gret)
T )abcd (x , x ′), (9)

where Nabcd (x , x ′) is the noise kernel accounting for the fluctuations of the stress
tensor operator, and (Gret)abcd (x , x ′) is the retarded propagator with vanishing ini-
tial conditions associated with the integro-differential operator Labcd (x , x ′) defined
as

Labcd (x , x ′) = (1/2)(ηacηbd − ηabηcd/2)�δ(x − x ′)

+ 2κ̄ H (ren)
abcd (x − x ′) + 2κ̄ M (ren)

abcd (x − x ′), (10)

where the kernel H corresponds to the sum of the expectation values of the com-
mutator and the imaginary part of the time-ordered product of the stress tensor
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operator for the matter fields evaluated on the background geometry, and the
kernel M is obtained by functionally differentiating with respect to the metric
the expectation value of the stress tensor operator on the background geometry
taking into account only its explicit dependence on the metric. See Eqs. (5) and (6)
in Hu et al. (2004) for the exact definition of both kernels.

The same kind of exponential instabilities as in the runaway solutions of the
homogeneous part of the Einstein–Langevin equation (the linearized semiclassi-
cal Einstein equation) also arises when computing the retarded propagator Gret.
To deal with those instabilities, similar to the case of the intrinsic fluctuations,
one possibility is to make use of the order reduction prescription. The Einstein–
Langevin equation becomes then G(1)

ab = κξab. The second possibility, following
the proposal of Hawking et al., is to impose boundary conditions which discard
the exponentially growing solutions and translate into a special choice of the in-
tegration contour when Fourier transforming back to space-time coordinates the
expression for the propagator. In fact, it turns out that the propagator which results
from adopting that prescription coincides with the propagator that was employed
in Martı́n and Verdaguer (2000). However, it should be emphasized that this propa-
gator is no longer the retarded one since it exhibits causality violations at Planckian
scales. A more detailed discussion on all these points can be found in Appendix E
of Hu et al. (2004).

Following Hu et al. (2004) and Martı́n and Verdaguer (2000), the Einstein–
Langevin equation can be entirely written in terms of the linearized Einstein tensor
G̃(1)

µν(p). One can then solve the stochastic equation for G̃(1)
µν(p) and obtain its

correlation function (Hu et al., 2004; Martı́n and Verdaguer, 2000):

〈
G̃(1)

µν(p)G̃(1)
ρσ (p′)

〉
ξ

= κ̄2 D̃µναβ(p)
〈
ξ̃ αβ(p)ξ̃ γ δ(p′)

〉
ξ

D̃ρσγ δ(p′)

= κ̄2

N
D̃µναβ(p)Ñ αβγ δ(p)D̃ρσγ δ(−p)(2π )4δ(p + p′), (11)

where the explicit expressions for the noise kernel Ñ αβγ δ(p) and the propagator
D̃µναβ(p) can be found, respectively, in Appendices B and E of Hu et al. (2004).
On the other hand, if we make use of the order reduction prescription, we get

〈
G̃(1)

µν(p)G̃(1)
ρσ (p′)

〉
ξ

= κ̄2
〈
ξ̃ αβ(p)ξ̃ γ δ(p′)

〉
ξ

= κ̄2

N
N̄ αβγ δ(p)(2π )4δ(p + p′). (12)

Note that G(1)
µν(p) is gauge invariant when perturbing a Minkowski background

because the background tensor G(0)
ab vanishes and, hence L�ζ G(0)

ab also vanishes for

any vector field �ζ .
Finally, using the expression for the linearized Einstein tensor in the

Lorentz gauge, G̃(1)
µν = (1/2)p2 ˜̄hµν with h̄µν = hµν − (1/2)ηµνhα

α , we obtain the
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correlation function for the metric perturbations in that gauge:

〈 ˜̄hµν(p) ˜̄hρσ (p′)〉ξ = 4κ̄2

N

1

(p2)2
D̃µναβ(p)N̄ αβγ δ(p)D̃ρσγ δ(−p)(2π )4δ(p + p′),

(13)
or

〈 ˜̄hµν(p) ˜̄hρσ (p′)〉ξ = 4κ̄2

N

1

(p2)2
N̄µνρσ (p)(2π )4δ(p + p′), (14)

if the order reduction prescription is employed. It should be emphasized that,
contrary to the linearized Einstein tensor G(1)

ab , the metric perturbation hab is not
gauge invariant. This should not pose a major problem provided that the gauge has
been completely fixed, as explained in the literature (Hu et al., 2004; Roura and
Verdaguer, manuscript in preparation-a).

The correlation functions in space-time coordinates can be easily derived by
Fourier transforming Eq. (13) or (14). There is apparently an infrared divergence
at p2 = 0 for the massless case, but such an infrared divergence seems to be
just a gauge artifact (Hu et al., 2004). Therefore, we can conclude that, once the
instabilities giving rise to the unphysical runaway solutions have been properly
dealt with, the fluctuations of the metric perturbations around the Minkowski
space-time induced by the interaction with quantum scalar fields are indeed stable
(if instabilities had been present, they would have led to a divergent result when
Fourier transforming back to space-time coordinates).

5. DISCUSSION

An analysis of the stability of any solution of SCG with respect to small quan-
tum corrections should consider not only the evolution of the expectation value of
the metric perturbations around that solution, but also their fluctuations, encoded in
the quantum correlation functions. Making use of the equivalence (to leading order
in 1/N , where N is the number of matter fields) between the stochastic correlation
functions obtained in stochastic semiclassical gravity and the quantum correla-
tion functions for metric perturbations around a solution of SCG, the symmetrized
2-point quantum correlation function for the metric perturbations can be decom-
posed into two distinct parts: the intrinsic fluctuations due to the fluctuations of the
initial state of the metric perturbations itself, and the fluctuations induced by their
interaction with the matter fields. If one considers the linearized perturbations of
the semiclassical Einstein equation, only information on the intrinsic fluctuations
can be retrieved. On the other hand, the information on the induced fluctuations
naturally follows from the solutions of the Einstein–Langevin equation.

As a specific example, we analyzed the symmetrized 2-point quantum correla-
tion function for the metric perturbations around Minkowski space-time interacting



P1: KEF

International Journal of Theoretical Physics [ijtp] pp1338-ijtp-493871 November 10, 2004 21:27 Style file version May 30th, 2002

Stability of Semiclassical Gravity Solutions 763

with N scalar fields initially in the Minkowski vacuum state. Once the ultraviolet
instabilities which are ubiquitous in SCG (Hu et al., 2004) and commonly regarded
as unphysical have been properly dealt with by using the order reduction prescrip-
tion or the procedure proposed in Hawking et al. (2001); Hawking and Hertog
(1981), both the intrinsic and the induced contributions to the quantum correlation
function for the metric perturbations are found to be stable.

The symmetrized quantum correlation function obtained for the metric per-
turbations around Minkowski is in agreement with the real part of the propaga-
tor obtained by Tomboulis (1977) using a large N expansion (he actually con-
sidered fermionic rather than scalar fields, but that just amounts to a change
in one coefficient). It is worth noticing that the imaginary part of the propa-
gator can be easily obtained from the expectation value for the commutator of
the metric perturbations, which is given by 2iκ(Gret(x ′, x) − Gret(x , x ′)), as ex-
plained in the literature (Hu et al., 2004; Roura and Verdaguer, manuscript in
preparation-a). Tomboulis used the in–out formalism rather than the CTP for-
malism employed in this paper. Nevertheless, his propagator is equivalent to the
time-ordered CTP propagator when asymptotic initial conditions are considered
because in Minkowski space-time there is no real particle creation and the in and
out vacua are equivalent (up to some phase which is absorbed in the usual nor-
malization of the in–out propagator). The use of a CTP formulation is, however,
crucial to obtain true correlation functions rather than transition matrix elements in
dynamical (nonstationary) situations (such as in an expanding Robertson–Walker
background geometry), where the in–out scattering matrix might not even be well
defined.

It should be mentioned that Ford and collaborators have stressed the impor-
tance of the metric fluctuations and investigated some of their physical implications
(Borgman and Ford, 2004; Ford, 1982, 1999; Ford and Svaiter, 1997; Ford and
Wu, 2003; Ku and Ford, 1993; Yu and Ford,1999, 2000). They have considered
both intrinsic (Ford, 1999; Ford and Svaiter, 1997; Yu and Ford, 1999, 2000) and
induced fluctuations (Borgman and Ford, 2004; Ford, 1982, 1999; Ford and Wu,
2003; Ku and Ford, 1993), which they usually refer to as active and passive fluctua-
tions, respectively. However, they usually consider these two kinds of fluctuations
separately and have not provided a unified treatment where both of them can
be understood as different contributions to the full quantum correlation function.
Moreover, they always neglect the nonlocal term which encodes the averaged back
reaction on the metric perturbations due to the modified dynamics of the matter
fields generated by the metric perturbations themselves (this term is often called
the dissipation term by analogy with quantum Brownian motion models). Their
justification is by arguing that those terms would be of higher order in a perturbative
expansion. That is indeed the case when considering a Minkowski background if
the order reduction prescription is employed, but it is not clear whether it remains
true under more general conditions. In fact, as mentioned in Roura and Verdaguer
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(manuscript in preparation-b), for the usual cosmological inflationary models the
contribution of the nonlocal terms can be comparable or even larger than that of
the remaining terms. Finally, to deal with the singular coincidence limit of the
noise kernel, Kuo and Ford (1993) opted to subtract a number of terms including
the fluctuations for the Minkowski vacuum. Even when no such subtraction was
performed (because a method based on multiple integrations by parts was used
instead) (Ford, 1999; Wu et al., 2002; Wu and Ford, 2001), they usually discard the
fluctuations for the Minkowski vacuum. Therefore, the information on the metric
fluctuations around a Minkowski background when the matter fields are in the
vacuum state is missing in their work.

An additional number of partially open issues are discussed in Hu et al.
(2004), to which the reader is referred for further details.
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